Definition Was ist Ethernet?
Von seinen proprietären Anfängen in den 1970er Jahren hat sich das Ethernet zum weltweit verbreiteten IEEE-Standard 802.3 mit atemberaubenden Bandbreiten entwickelt und erschließt mit Industrial Ethernet und Metro Ethernet auch Einsatzfelder außerhalb traditioneller Büroumgebungen.
Anbieter zum Thema

Ethernet beschreibt eine kabelgebundene Netzwerktechnologie. Der mittlerweile als IEEE 802.3 standardisierte Ansatz war zunächst für lokale Büroumgebungen konzipiert, wird mittlerweile jedoch auch in Produktionsumgebungen und von Carriern verwendet.
ALOHA und die Anfänge am PARC
Ursprünglich wurde das Ethernetprotokoll vom drahtlosen Forschungsnetzwerk ALOHA abgeleitet und sollte dazu dienen, die PCs im Xerox Palo Alto Research Center (PARC) mit Internetzgängen und einem Laserdrucker zu verbinden. Das Konzept hierfür hat Bob Metcalfe nach eigenen Angaben am 22. Mai 1973 zuerst in einem internen Memo beschrieben und gut drei Jahre später mit seinem Mitstreiter David Boggs unter dem Titel „Ethernet: Distributed Packet Switching for Local Computer Networks" in den „Communications of the ACM“ öffentlich vorgestellt.
Als Verbindung des frühen Ethernets diente ein einzelnes Koaxialkabel an der Decke, dessen Anmutung in der Literatur mit der eines Gartenschlauches beschrieben wird. Metcalfe und seine Kollegen beschrieben das Medium derweil nur als „Ether“ zu dem sie Datenpakete hochschickten – in Anlehnung an die im 17. Jahrhundert postulierte hypothetische Substanz eines Lichtäthers.
Vom „thick Ethernet“ – einem 10 Millimeter dicken Koaxialkabel, das angebohrt und per Vampirklemme angezapft wurde – hat sich das Transportmedium nach und nach weiterentwickelt. Einem dünneren und flexiblere Koaxialkabel mit BNC-Kopplungen („Thin Ethernet“) folgte schließlich eine Topologie, die sich von einem durchgängigen Kabelstrang löste und mit dem Netzwerkverantwortliche defekte Kabelverbindungen einfacher aufspüren konnten. Zunächst kam hierbei ein zentraler Hub zum Einsatz. Die Clients wurden nun direkt am Hub angeschlossen – und das nicht mehr per Koaxialkabel, sondern mit verbreiteten Telefonkabeln aus Kupfer.
Die Kapazität des Mediums blieb damit freilich unverändert: Im Prinzip verhielt sich die Infrastruktur weiterhin so, als hingen alle Rechner an einem Kabel. Das änderte sich erst mit den Switches – die Datenpakete gezielt an den jeweiligen Empfänger weiterleiteten.
Klassisch versus geswitcht
An dieser Stelle muss zwischen einem klassischen und einem geswitchten Ethernet unterschieden werden. Beim klassischen Ethernet kommen CSMA/CD-Algorithmen (Carrier Sense Multiple Access/Collision Detection) eine entscheidende Rolle zu, um Zugriffsrechte auf das Medium zu regeln. Das führt insbesondere bei einer höheren Netzwerknutzung zu Staus respektive Kapazitätsüberlastungen – also einer schlechten Effizienz des gesamten Netzes.
Mit dem geswitchten Ethernet verteilt dagegen ein Switch Pakete an die jeweiligen Zielports. Kollisionen könnten damit lediglich zwischen Switch und Client auftreten, und bei einer typischerweise eingesetzten Vollduplex-Verbindung komplett ausgeschlossen werden. Damit kann das geswitchte Ethernet auf eine CSMA/CD verzichten; alternativ benötigt es nun aber ein Verfahren, das die Datenübertragung in überlasteten Netzen zeitweise stoppt: Die Flußkontrolle.
Nichtsdestotrotz wurde CSMA/CD erst mit 10-Gigabit-Ethernet abgeschafft. Die vorherigen Standards verwendeten derweil noch verschiedene Kniffe um hohe Geschwindigkeiten, Leitungen praktikabler Länge und die Kollisionserkennung unter einen Hut zu bringen. So nutzte Gigabit-Ethernet etwa das Feature „Carrier Extension“, um Frames für die Kollisionserkennung künstlich zu vergrößern. Das resultierte wiederum in einer unnötigen Bandbreitenverschwendung, die per „Frame Bursting“ ausgeglichen werden sollte – das Verfahren ermöglicht es Sendern, mehrere Frames zusammengefasst zu übertragen und so das Verhältnis von Nutz- und Fülldaten zu optimieren. Die mit Gigabit auftauchenden „Jumbo Frames“ mit einer Länge von mehr als 1.500 Byte sind derweil kein Teil des Standards, werden aber von zahlreichen Herstellern unterstützt. Zweck der Datenpakete mit Überlänge ist es, die Arbeitslast für das Verarbeiten einzelner Pakete zu verringern.
Kabel, Kodierungen, PoE
Wurden zunächst Koaxialkabel für Ethernet verwendet, haben sich aktuell Twisted-Pair-Kupfer- und Glasfaser-Kabel durchgesetzt. Die zu Beginn genutzte Manchestercodierung wurde mittlerweile durch effizientere Kodierverfahren ersetzt, darunter 4B/5B oder 8B/10B.
Per Kupfer lassen sich mittlerweile nicht nur mehr Daten übertragen, sondern angeschlossene Geräte auch mit Energie versorgen. Die entsprechenden Verfahren werden in IEEE 802.3af beschrieben und als „Power over Ethernet“ – kurz PoE – bezeichnet.
Standardisierung
Ethernet kann weitgehend mit IEEE 802.3 gleichgesetzt werden. Der von DEC, Intel und Xerox definierte DIX-Standard unterscheidet sich jedoch beim Frame-Format von der später als 802.3 veröffentlichten Spezifikation: Dort wo DIX ein „Type“-Feld vorsieht, definiert die IEEE „Length“. Der Konflikt wurde schließlich wie folgt gelöst: Werte kleiner oder gleich 1.536 (0x600) werden als Framelänge interpretiert, Werte darüber als Typ.
Bei der Diskussion um den Nachfolger des 10 Mbit/s schnellen Ethernets gab es zwei Lager. Als IEEE 802.3u setzte sich schließlich das abwärtskompatible Fast Ethernet durch. Dem neu ins Leben gerufenen und mit 802.3 konkurrierenden Standard 802.12 war derweil kein längeres Leben beschieden.
In Sachen Geschwindigkeit konzentrieren sich die Standardisierungsbemühungen aktuell auf Ethernet-Varianten mit 200 Gbit/s und 400 Gbit/s (P802.3bs). Der als 802.3by geführte Standard beschreibt Ethernet mit Geschwindigkeiten mit 25 Gbit/s – und soll die Lücke zwischen Infrastrukturen mit zehn und 40 Gbit/s zu vergleichsweise niedrigen Kosten schließen. Als weiterer Zwischenstandard gilt 802.3bz, der über Kupferkabel der Kategorien Cat 5e respektive Cat 6 bis zu fünf Gbit/s überträgt.
Der voraussichtlich 2018 final verfügbare Standard 802.3cd widmet sich derweil den Durchsätzen von 50, 100 und 200 Gbit/s.
Abseits des Büros
Der Terminus „Industrial Ethernet“ beschreibt Bestrebungen, Geräte in der industriellen Fertigung per Ethernet anzubinden. Dem entsprechend müssen dann auch Switches, Hubs und Medienkonverter höhere Anforderungen an Störsicherheit und Schutzart erfüllen, für eine Hutschienenmontage vorgesehen sein oder sich per Gleichspannung betreiben lassen. Für Echtzeitanforderungen sind zudem spezielle Protokolle vorgesehen.
Das Metro Ethernet soll derweil die Einfachheit und Kostenstruktur des Ethernet auf Wide Area Networks (WAN) Übertragen. Das Modell wurde mittlerweile um das vom Industriekonsortium MEF (vormals Metro Ethernet Forum) vorangetriebene Carrier Ethernet erweitert, das den Markt für Ethernetdienste voranbringen soll und Servicecharakteristika vergleichbar macht.
(ID:44598385)